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1.0 INTRODUCTION

T,
~The development of a thin-wire frequency-~domain (TWFD) method of
) moments code was discussed in a previous report [l]). Since that time

this code has undergone further development and numerical testing. The
purpose of the code is to provide a theoretical and numerical basis to
aid in understanding the resonance region electromagnetic scattering
from thin-wire stick models. This frequency domain code augments a
time-domain code (TWTD) which calculates the scattered transient
response for an impulsive incident field. The outputs from both of
these codes have provided numerical predictions which have been indis-

| r pensible in assessing our ability to extract resonance information from

actual scattering range data, - °

The Laplace transform H(s,Q) of a target’s impulse response can be

i l expressed as {2]

: N
: H(s,R) = Z A s, . (1)
=1 8

The directions and polarizations of the incident and scattered fields
are collectively denoted by Q in the above. The Fourier transform
H(w,R) of the impulse response is simply H(s,2) evaluated along the jw

j axis. The summation on the right side of equation (1) includes all

: regonance modes which contribute significantly to the sattering. The
pole positions 8, are independent of Q whereas the corresponding
residues Ai dependent on Q. The entire function portion, W(s,l), of the

i response contains valuable non-resonance information about the target,

For a specified stick model the TWFD code has been designed to

perform the following basic functions:
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1 of the resonance poles.

Calculate the corresponding residues A1 for the specified

Directly calculate the transfer function h(w,R) for specified

These capabilities allow us to do a variety of numerical experi-

ments which can be compared with TWID [3] numerical experiments as well

as with the results of analyzing physical measurements. Each of these

capabilities will be discussed in this report. Following that we will

show the results of some numerical experiments which were performed

using TWFD on a particular thin-wire model. These then are compared

with results using TWID as well as with physical measurements made with

—— e
)
: 1) Locate the positions s
: 2)
- values of Q.
3)
values of Q.
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: the same model.
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2.0 SUMMARY OF TWFD CODE ol

The TWFD code solves for the cw scattering by using the method of
moments. This section will summarize the formulation TWFD uses to solve
the frequency domain problem., Reference [1] provides most of the =
details. The following three sections will concentrate on the primary

capabilities we have built into the code since that report.

The scattered cw field can be obtained by applying a Green's
function to the surface current response of the scatterer. For thin
wire models the surface current can be assumed to flow solely in the

direction of the axis of each wire segment. Furthermore, certain

r -

approximations can be made which reduce the Green’s function integral to
a one~dimensional integral along the axes of the wire segments compris—

ing the model.

An equation for the current response can be obtained by applying -

the surface boundary conditions. The most important of these is that:

(1) the tangential component of the sum of the scattered and

incident fields at the surface is linearly proportional to the

T T IR EE
Lo e '

local surface current.

For perfect conductors the proportionality constant is zero and conse-
quently, the tangential component of the total E-field is zero at the
asurface. Condition (1) reduces the Green’s function integral to an
integral equation which relates the induced surface current distribution
to the known tangential component of the incident E-field at each point

on the surface.

The integral equation can be solved by using the method of
moments. This consists of introducing a set of linearly independent ) 1
. e
basis functions. The TWFD code uses a set of overlapping triangle ' W
. 1
4

° ..
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functions as discussed in detail in reference [1]. The unknown current — -
1(Z) can be expressed as a linear combination of the basis functions

Ti(C), €., -‘ '-.

u o
) = 3w T(0) (2) '
i=1

PP ]

(here [ is a parameter which apecifies position along the wire seg-

ments). In practice the number of bases, M, is finite and not complete.

Thus, at best the sum in equation (2) provides an approximation to the
actual current. Taking the scalar product of each basis with the
tangential component of the incident E-field reduces the integral

equation to a matrix equation,

Vaz1 (3) -

where V is an M x | vector whose components are these scalar products, I

is an M vector whose components are the unknowns u, and Z is the M x M S

impedance matrix. N
There are additional boundary conditions which must also be
satisfied. These are:
(2) the current at free segment ends must be zero,
(3) the net current flowing into any junction must be zero,
and -
(4) the charge density (dl/dg) for all segments meeting at a - i;:;
junction must converge to the same limit at the junction. Lo
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These conditions introduce additional linear constaints on the coeffi-
cients uy which reduce the number of independent variables. This
requires the reduction of equation (3) to an M’ dimensional matrix
equation where M'< M. The details of this reduction are discussed in

reference [l]. In this reduced representation the u, are linear

i
combinations of the indepenent components of the unknown vector I’, viz,

I1=381 (4)
where B is an M x M” matrix which contains the boundary conditions. The

vector V' and the M’ x M’ reduced impedance matrix Z° can be evaluated

directly. The surface response can thus be obtained for a given

frequency by finding (Z')—l, forming
, ~: "11
I’ =(z") v , (5)
and then making use of equation (4).

The scattered cw field can be obtained by integrating the Green’s
function with the surface current response. Using equation (2) it is
straight forward to show that this incegral reduces to a vector product,
viz,

H (w,Q) = G1 (6)

where G 1is a 1 x M row vector whose components are the scalar products

of the Green’s function and the basis functions. By forming
G =GB (7)
it follows that

H (0,2) = 6" (z)7} v/ (8)

-




Equation (8) is the solution of the cw scattering problem, If
wire segments have non-zero diameters, the matrix Z’ will be non-

singular and, hence, invertible for all real w.

It is important to note where the @ dependence is in equation (.
The vector V’ depends on the incident propagation direction and polar
zation. The vector G’ depends on the position of the observation poi
as well as the observed polarization. The impedance matrix depends
neither on the polarizatons nor the directions of the incident and
observed fields. It strictly depends on the scattering system itself
However, all three factors on the right side of equation (8) depend o

the frequency.

We can make use of analytic continuation to extend equation (8)
the w-plane. The singularity expansion method (SEM) [4] says that we
can do this except at certain discrete singularities. It has been sh

that

LW ¢))
i
H(w,2) = -] O
1.1 w—wi.

+ W(w,R) 9

Equation (9) is equation (1) rewritten using the transformation s=jw.
The TWFD code converts the s—plane representation to the equivalent

w-plane representation when doing the calculations.

The singularities are due to the impedance matrix. Both G’ and
are analytic everywhere. It follows that the singular points w, are
roots of det(z’). The primary function of TWFD is to find these root
which are the resonance poles. The method of moments approach shows

very clearly that these poles are independent of incident and scattei

aspects and polarizatioas,




The TWFD is also capable of calculating Ai(n) and H(w,Q) for any
combination of the variables Q. Indeed, parametric studies of Q can be

- done quite readily by recognizing that its dependencies are contained

N within G° and V’ which are easily calculated. This will be discussed

' - more thoroughly in the following sectioms.

T
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3.0 LOCATING THE RESONANCE POLES

The primary function of TWFD is to predict the positions of
resonance poles. This is accomplished by finding the zeros of
D(w) = det(z’(m)). We initially used a technique which applied contour
integration to the evaluation of the zeros. This was mentioned in
Reference [1). Unfortunately, this approach required that D(w) be
evaluated at an unacceptably large number of points. The time require-
ments were prohibitive. We then resorted to using a steepest descent
approach. This has proven to give good results and decreased the
calculation time by almost two orders of magnitude. The only concern
with using steepest descent is the possibility of missing a pole.
However, our numerical tests have shown this fear to be unwarranted,
especially since the TWTD code provides an independent means of checking
the TWFD results.,

The steepest descent technique converges to a zero of D(w)
starting from an initial guess. This is done as foliows. At some
initial guess w, a "shooting vector" Aw  is calculated which leads to a

new guess w, = w_ + Amo. At w. a "shooting vector" Aw, is calculated

which leadslto another guess. ;he sequence of guesses ionverges to a
zero. The sequence |Awn| converges monotonically to zero. The position
of a pole is sufficiently approximated as wy when IAwn_ll < € where € is
some small preselected positive number. In practice a half dozen or
fewer iterations of this process is usually sufficient. The number n

depends on how close the initial guess is to an actual pole.

The basis of the technique is to produce an appropriate "shooting
vector” bw  at each successive guess w . This is done by forming
A(wn) - iD(mn)I2 and grad(A(wn)). By using the Cauchy-Rieman conditions
it is possible to obtain A and its gradient by calculating D at wo and

wy + Ax where Ax is a real-valued cifferential step. The direction of

At K
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the "shooting vector" is that of gtadA(wn) and its magnitude 1s »
IA(wn)|/igrad(A(mn)]|. The code includes another factor which helps
speed up the convergence if the initial guess is not close to a pole.

However, the technique used is essentially that described.

The frequency plane is generally normalized so that for the lowest
order poles Re(w) = 1. Using € = .00l we have found that convergence is
often achieved with 2 or 3 iterations and almost always within 5 or 6.
Since D has to be calculated at two points for each "shooting vector", »
it follows that for each pole prediction D(w) must be calculated at
about 4 to 10 points.

T
- .4'A

Convergence is not always achieved. The criterion we chose for »
non-convergence 1s two successively increasing values of IAwnI. Our
experience with running TWFD has shown that as we increase the order of
the pole being sought, non—convergence becomes a problem. The reason
for this is that the finite basis set cannot be adequately used to .
represent the higher modes. If we significantly increase the number of B
bases, more higher order poles can be found. However, for any particu~

lar basis set, we find that there is a maximum pole order to which we

can converge. In short the cost per pole increases dramatically with
increasing pole frequency. In practice the maximum frequency of
interest can be obtained by knowing the spectral response of the

transmit/receive system in which we are interested.

..................




4.0. CALCULATING THE RESIDUES

The calculation of the residues Ai(Q) (see equations (1) and (9))
is another capability we have built into TWFD. Most particularly we are
interested in how they depend on the directions and polarizations
(denoted by ) of the incident and detected fields. Using the technique
outlined in this subsection, parametric studies of this kind can be
carried out readily and quite efficiently.

The formulation of the technique can be seen by combining equa-

tions (8) and (9). From these we have that

Ai(Q) = jG’(wi) Ai v'(mi) (10)
where A’ = lm (ww)) (2'(up))7} (11)
m-)mi

In equation (10) we have used the fact that G° and V’ are analytic
everywhere, All the @ dependence 1is contained in these two vectors
which are easily calculated. The matrix Zi associated with each wy is
independent of (. Almost all the computational effort in calculating
Ai(ﬂ) is in calculating ;i. Thus, what we do is to obtain ;; once, when
we locate w,, then store it for later use in doing parametric studies of

i

The validity of this technique depends on the reliability with
which we can numerically form the limit in equation (ll). There are
various ways of doing this. We have chosen the most straightfoward
approach and have found that it gives good results. The approach is as
follows. Let ai and z; be corresponding components of Z' and

i

(Z'(wn))-l, respectively., If IAwn_1| < €, we assume

10

- _4




g =

a -1 wi) z' | (12a)

a{ = (mn - wi)z; (12b)

where wy is the actual pole which w and w, approximate. The unknown

1

mi can be eliminated to obtain

a/ = n-1 nl . (13)

The value of a, obtained from equation (13) is actually an approx-

imation which depends on the convergence criterion «. Our initial

numerical tests showed that a, was weakly dependent on € in the region

of the values which we typically use for this parameter (.01-.0001).

This indicated that equation (13) provided a good approximation of ai.
As € was given smaller values, random variations in ai began to occur

because of the inherent numerical inaccuracies of the computer. More
extensive tests revealed that there are some poles for which the
technique described in equations 12 and 13 does not give an adequate
convergence of the limiting process of equation (ll1). This is discussed
in section 6.3. At this point it is not clear to us why the technique
should work well for some poles and not work for others. We intend to

resolve this problem in a future study.
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n 5.0 PREDICT THE IMPULSE RESPONSE

~:f The impulse response can be obtained by applying equation (8) to
o points on the real-w axis. 1In practice we perform this calculation at a
discrete and finite set {wz|£-l,M} of such points. A DFT applied to
thigs set then provides a prediction of the impulse response for a
discrete set {tnlm-l,M} of sampled points inthe time domain.

It is desirable that the time tl correspond to the initial
reception of the scattered signal at the receiver. The impulse response
obtained from equation (8) will be referenced to the time at which the
incident impulse crosses the origin of the coordinate system. Let t’ be
the time referenced to this latter event. Let t be the time referenced
to the initial reception of the response. It is necessary to determine
T so that t° and T + t correspond to simultaneous points in time. The
desired transfer function then becomes

Hy(w,8) = e Jut

H(w,Q), (14)

and the corresponding impulse response will be referenced to time t with
t=0 corresponding to the first sample point tl.
For the far-field response T can be determined quite readily. Let

T=T - AT (15)

;f Where T corresponds to the time it takes for a signal to travel
from the origin to the observation point. In the calculations the
origin is always chosen as a point on the target. Because of the
target’s finite size it is possible for scattering from some of its
points to reach the receiver before the initial reception of scattering

from the origin. The time AT accounts for this effect. Figure 1

illustrates the difference between the times To and 7.
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Figure 1 Far Field Impulse Response, h(t), of a target. The original
of the coordinate system is chosen as a point on the target.
The time T is the earliest that scattering from the origin

S o o

can reach the receiver. Because the target has a finite size

the initial reception of target scattering can occur at some
time T < To.
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I The time T is readily determined from the distance between the (
observation point and the origin. It turns out that the factor ejwto
appears explicitly in G’ of equation (8). Thus, by simply omitting it

) in the calculation, the translation to time T, is made. Doing this it

. follows that

~v

wiTt

_ H (0,2) = 3 BGu,) . (16)
p
al Equation (A.l1) 1is the explicit form of H(w,2) for a thin

wire scatterer. The time At is determined from the unit directional

vectors n and m which point, respectively, from the origin to the

->
; transmitter and receiver. Let r represent the position of any point on -
4 the scatterer relative to the origin. It {s easy to show that
— AT = Max,r*(ntm) . (17) -
. ( ' ) -
The receiver will act as a filter on the signal., This can be

i‘ represented by some transfer function F(w) which can be included in the oy

calculations. A prediction of the measured transient response is then :

obtained by applying a DFT to
» Hy(w,Q) = F(w)'Hl(w,n) . (18)

The function F(yw) provides a natural cutoff for the maximum frequency
i needed.
J |
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i 6.0 NUMERICAL RESULTS AND VALIDATION

This section presents the results of the TWFD validation study.
In all cases TWFD numerical results were validated with TWTD numerical
data or experimental measurements or both. All of the aspects of TWFD

were studied and tested. These studies include:

1., Pole estimated from zeros of impedance matrix
(Section 6.1)

2., Prediction of scattering cross section and impulse

response (Section 6.2)

3. Production of scattered field polar residue patterns
(Section 6.3)

‘[ The results for studies 1 and 2 validate TWFD quite well. The
results for study 3 pointed out a numerical convergence problem when we

attempted to perform the limiting process of equation (11).

a Two canonical (analytically predictable) stick aircraft were
modeled using TWFD for the series of validation tests. These models are
shown schematically in Figure 2. The two targets were chosen so that
both TWFD and TWTD could be used and so that the experimental targets
could be constructed easily in varying scales. The modified stick model
differs from the standard stick only in the location of the horizontal
stabilizer. The choice of the simple target shapes allows for a first

order correlation of the resonances with the target configuration.

This section only displays the results of the validation tests.

These data presented here along with more extensive results were used in

a companion ONR study investigating the use of resonance extraction for :if;{;

target identification and characterization. That study is summarized in Y

-
'@

a three~volume final report [S].
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' Figure 2 Comparison of the two canonical stick model targets used
to validate TWED with TWTD and the measured data.
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6.1 POLE ESTIMATES

An initial check on the resonances produced using TWFD was in fact
a self check. GRC’s Prony’s method algorithm [1,5] was applied to the
scattered fields produced by TWFD. The resulting extracted poles are
compared to the poles obtained from zeros of the determinant of the TWFD
impedance matrix in Table 1. As would be expected, the poles produced
by the two mechanisms are very close. Table 1 also shows the aspect

angle independence of the resonances of the two stick models.

In order to properly validate the poles produced from the TWFD
impedance matrix, resonances were extracted from measured fields. These
fields were measured in a cw scattering chamber (described in detail in
reference [5].) Tables 2 and 3 compare the extracted poles at each of
the nine scattering angles with the theoretically produced TWFD poles.
Figures 3 and 4 plot the poles of Tables 2 and 3 respectively in the
complex s plane, These figures graphically show the clustering of the
poles as a function of angle and any deviation of the cluster mean from

the theoretically predicted value.

The results of these pole extraction studies convinced us that the
code was working within numerical expectations. Hence TWFD can be used

as an independent validation tool for resonance extraction tests.

6.2  SCATTERED FIELDS

The scattered fields predicted by TWFD for the two canonical
targets were compared to three other data sources in both the time and
frequency domain. The TWTD numerical model was used to produce smoothed
impulse responses directly in the time domain. Spectral data was
obtained by performing a FFT on the data. The scattering spectrum was

measured directly in the frequency domain using a c¢w measurement system
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REGION 7
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Figure 3

AN-69659

ORIENTATIONS:
0° (NOSE INCIDENCE)
30
45
60

90
120
135
150
180 (TAIL INCIDENCE)

+  EXPERIMENTAL
-+ THEORETICAL

Overlays of poles estimated from cw measured responses (Table 2)
at all orientations for standard stick model. The theoretical
values are shown with the large +.
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Figure 4 Overlays of poles estimated from cw measured responses (Table 3)
at all orientations for the modified stick model to the TWFD
pivoduced theoretical poles shown with a large +.
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Table

1 Comparison of poles estimated by applying Prony's method t
noise-free numerical responses to theoretical values obtai
from zeros of the TWFD impedance matrix determinant for th
standard and modified stick models.

STANDARD STICK

MODIFIED STICK

ANGLE(DEG) |[POLE 1 POLE 2 POLE 3 POLE 4 | POLE 1 POLE 2 POLE 3 POLE
0. -=—==  =0.110 =0.106 —w=== e

30. -0.047 -0.111 -0,083 -0.084 | -0.039 -0.106 =0.080 ~0.0¢
45, -0.047 -0.110 -0.083 -0.087 | -0.039 -0.105 -0.080 ~0.0t
60. -0.047 -0.110 -0.083 -0.087 | -0.039 -0.106 =-D.080 =~0,0¢
90. -0.047 -———-- =0.083 -0.087 | -0.039 ~——==  =0,080 -0.0¢
120, ~0.047 -0.110 -0,083 -0.087 | -0.039 -0.106 -0.080 ~0.0¢
135. -0.047 -0.110 -0.083 -0.087 | -0.039 -0.106 -0.080 =~0.0t
150. -0.047 -0.110 -0.083 -0.087 | -0.039 -0.106 -0.080 ~0.0¢
180. ——-—  =0.110 -0.106 ——— ———
MEAN: -0.047 -0.110 -0.083 -0.086 | -0.039 -0,106 =-0.080 =-0.0¢
THEORETICAL:| -0.044 -0.106 -0.085 -0.084 | -0.037 -0.103 -0.076 -~0.0¢
0. ——— 0.889 0.888 —— ~——

30. 0.705 0.888 1.261 1.627 0.583 0.888 1.264 1.62:
45, 0.706 0.889 1.262 1.627 0.583 0.888 1.264 1.62
60. 0.706 0.889 1.262 1.627 0.583 0.887 1.264 1.62
90. 0.706 ——— 1.261 1.627 0.583 —— 1.264 1.62
120. 0.706 0.889 1.261 1.627 0.583 0.888 1.264 1.62:
135. 0.706 0.889 1.262 1.627 0.583 0.888 1.264 1.62
150. 0.706 0.889 1.261 1.627 0.583 0.887 1.264 1.62
180. —— 0.889 0.888  —w=== e
MEAN: 0.706 0.889 1.261 1.627 0.583 0.888 1,264 1.62
THEORETICAL:| 0.707 0.896 1.266 1.631 0.583 0.893 1.270 1.62
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Tacle 2 Theoretical poles from TWFD compared to the poles estimated
. from cw measurements at each orientation, their means and
- standard deviations (error radii) for the standard model).
-
REAL PART IMAGINARY PART
ANGLE(DEG) POLE 1 POLE 2 POLE 3 POLE 4 POLE 1 POLE 2 POLE 3 POLE &
0. —_— -0.128 0.875 —— —
30. -0.032 -0.104 -0.078 ——— 0.714 0.888 1.244 ——
45, =-0.,047 -0.129 -0.084 -0.082 0.708 0.908 1.235 1.602
60, -0,050 =-0.134 -0.134 -0.085 0.702 0.852 1.240 1.588
90. -0.046 W ————- -0.085 -0.079 0.702 ———— 1.238 1.578
120, -0.039 | ———-- -0.083 -0,091 0.704 ———— 1,247 1.596
135. -0,032 -0.138 ———— -0,084 0.696 0.918 —— 1,595
150. -0.036 -0.124 —— == | 0.696 0.884 ————=  —m—ee
180. —— -0.122 0.882 —— -
< MEAN: -0.040 -0.126 -0.082 -0.084 0.703 0.887 1.241 1.592
THEORETICAL: -0,044 -0.106 ~0.085 -0.084 0.707 0.896 1.266 1.631
STANDARD DEVIATION 0.010 0.024 0.006 0.010
e Table 3 Theoretical poles from TWFD compared to the poles estimated
- from cw measurements at each orientation, their means and
standard deviations (error radii) for the standard model.
REAL PART IMAGINARY PART
ANGLE(DEG) POLE 1 POLE 2 POLE 3 POLE 4 POLE ! POLE 2 POLE 3 POLE &
0. —— -0.117 ——— -0.029 ——— 0.872 —— 1.623
30. -0.037 -0.126 -0.091 -0.068 0.567 0.873 1.228 1.632
. 45, -0.040 -0.122 -0.084 -0.060 0.569 0.878 1.224 1.618
60. =-0.040 -0.105 ~-0.080 =0.067 0.568 0.880 1.229 1.603
90. -0.039 -0.093 -.078 ——— 0.569 0.864 1.230 ———
120, -0.040 -0.113 -0.079 -0.049 0.568 0.858 1.228 l1.614
135, -0.040 -0.115 ~0.083 -0.065 0.567 0.867 1.232 1.606
150, ——— -0.120 -0.086 -0.064 ——— 0.877 1.228 1.599
- 180. — -0.122 0.880 — —
MEAN: -0.039 -0.115 -0.083 -0.057 0.568 0.872 1.228 1.614
THEORETI[CAL: -0,037 -0.103 -0.076 -0.066 0.583 0.893 1.270 1.621
STANDARD DEVIATION 0.001 0.013 0.005 0.019
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[S]. The impulse response was measured directly in the time domain
using a transient scatterig facility [5]. Impulse response and spectral
data were obtained from the measured cw and time domain data respec-

tively by using a Fourier transform.

Table 4 is a guide to the TWFD comparisons (Figures 5~15) with the
data produced by the three other data sources. All plots showing TWFD
smoothed impulse response data are a result of Fourier transforming the

spectral data.

A study of Figures 5-15 shows that TWFD data is validated extreme-
ly well by the cw measured data. There are minor discrepancies between
TWFD and TWID and between TWFD and the measured time-domain data. 1In
both of these cases the discrepancies can be accounted for my numerical

deficiencies n TWTD or noise in the transiet measurements respectively.

6.3 RESIDUE PLOTS

Section 4.0 describes the numerical process used for calculating
the angular dependence of the residues associated with each resonance.
Figure 16 displays the polar residue magnitude radiation pattern for the
first four resonances for the two canonical targets. Figure 17 displays
the polar residue plots obtained by applying Prony’s method to the TWFD
scattered fields at nine discrete angles. By comparing Figures 16 and
17 it is clear that the record residues for each canonical shape do not
compare. While the polar plots of Figure 17 are coarse they are felt to
be the more accurate. Hence, at the second mode the residue calculation

as described in Section 4.0 does not work.

Numerical studies showed that the limiting process does not
converge for this particular mode. This may be due to the fact that the

second mode is very low Q. At present two methods are available to

22
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correct this problem. However since the production of polar residue
plots was not a requirement for TWFD under this work we elected to post-

pone correcting the residue calculationmns.
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Figure 16 Polar residue magnitude radiation patterns for (A) standard, Qfg{¢
and (B) modified models. The residues were obtained directly Wl
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Table 4 Guide to the TWFD data comparisons with data produced
by three other methods. The Numbers refer to figures
in the text.
MEASURED MEASURED
TWFD TWTD Cw TIME-DOMAIN
ANGLE IMPULSE SPECTRUM | IMPULSE  SPECTRUM IMPULSE  SPECTRUM
0 5A 5B 8A 8B 124 128
45 6A 6B 9A 98 13A 138
90 7A 78 10A 108 14A 148
180 11A 11B 15A 158
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where

For electromagnetic scattering from a thin wire structure, the
far-field transfer function (normalized to a one meter distance) can be

written as:

H(w,R) =

(ST AT e B “ - - T -

]
el

* |
' j
N
o
APPENDIX ]
P
®
This appendix summarizes the details of the calculations repre- ]
sented by equations (8), and (10). The matrices (Z'(w))—l and Ai are
obtained from the reduced impedance matrix the details of which are ]
described in reference [1]. ®

..
Wik 11 GmD adeo xp(d e (AL Vi
P
. L
C

= length scale factor

= free space impedance

= position of a point on scatterer

= unit directional vector of wire segment ®

]
y

= observed polarization ;;':

.

o

-
el
K

fl

= gtationary current along wire
= receiver direction

= displacement along a wire segment
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Using equation (2)

M
H(w,®) = =3z k, 5 U R (A.2)
i=1
where
i ek
R, = e / 2,T,(g)e a@ (A.3)
1 174 L

In equation (A.3) %, is the unit vector of the segment on which Ti (z)
is defined. The position X can be explicitly written as

> + ~
x =X, + 72

1 (A.4)

i

where ;i is the position of the beginning end of the segment. Using

(A.4) and the basis set of reference [1], the integral in (A.3) can be
performed explicitly to obtain

A a

R, = (e'li)exp(J%p ne(x + ;ili)) F, (A.5)

The factor F, takes on one of three values depending on whether i is (a)

i
the beginning point of a segment, (b) not a segment end-point, or (c)
the termination point of a segment. The values of F1 for these three

cases are, respectively:

ol + £ (a)/a, (A.6a)
Fy -<‘(f+(a) + f_(a))/A; (A.6b)
- e (), (A.6c)
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where f(+)(u) = (e -1)/a (A.7a)
“edp 2
£y = (e ™-1)/a (A.7b)
a = jkp neg (A.7¢)
Ai = Ai/L (A.7d)
and o, is half the basis width., Comparing (A.2) with (6) we can make

the identification
Gi = ‘jZokpRi . (A-S)

In accordance with the reduction discussed in reference [1], the

vector components Gi' can be formed as follows.

Gi =0 (A.9a)

for end points,

6" =G (A.9b)
for points not adjacent to end points, and
6" =G + %Gz €44 (A.9¢) .

for points adjacent to endpoints. The sum in equation (A.9¢) 1is over
all points meeting at the same junction which is adjacent to i. These

points (&’) are endpoints of all segments meeting at the particular

junction. The factor €94 is }iufug
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P+ P
L i +

s (A.9d)

A
ezi = (-1) __'E (-1) li

A

where A is the sum over the Az, of all segments meeting at the junction

and

1 1f adjacent point a beginning point

P =
i 2 if adjacent point a termination point

’

i
the corresponding rows and columns of Z' are eliminated (see reference

(n.

In practice the G, corresponding to endpoints are eliminated since

Again referring to [1] the components of V’° can be written as

2% -
’ . g
vi jomk [_d_g'ri(c)[ d¢ 2, ¢ E (A.10)
Zo L 2w
o
where Einc is the incident stationary plane wave with wavenumber kp/L,
viz.,
~ >
k_ mex
> ot -3
Einc Eo e L (A.11)

The magnitude of E° is chosen as unity., For very thin wires variations

of Einc in the angular integral are negligible and, thus,

’ =347k - - k - > P
v - _J?o_p (E,» t)exp(-3 Tp me(x+g,2)) Q  (A.122)
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i

i where Q = ( £y (B) + f(_)(B)) /8 (A.12b)
and B = j kpm-f. . (A.12¢)

L

Once the reduced impedance matrix is obtained for some w, it can

be inverted. The vectors G° and V' can then be calculated as described.
The multiplications of equation (8) or (10) can then be performed.
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